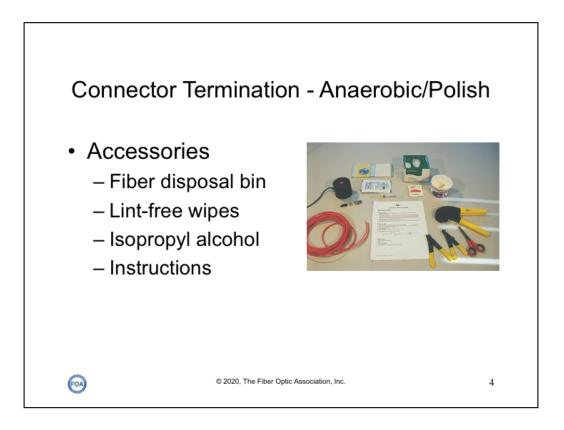
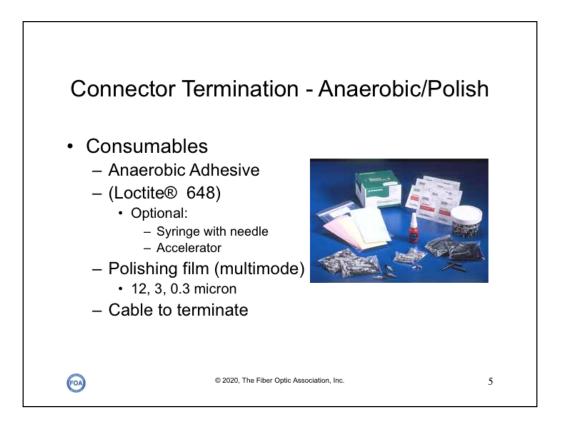


This FOA virtual hands-on (VHO) tutorial on fiber optics covers fiber optic cable termination using an anaerobic adhesive/polish connector process. It is copyrighted by the FOA and may not be distributed without FOA permission.


This VHO covers similar material to the videos on YouTube.

The lab manual has several pages of rules for safety in fiber optic labs. Each student should be familiar with them and follow them carefully. Instructors must follow them too!

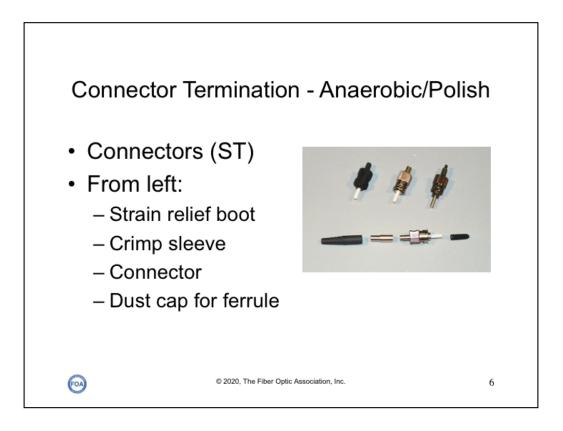

The first step in terminating optical fiber is to gather all the tools you will need and arrange them for easy use. It helps to be working in an area that has good light and is not dusty. For photo purposes, we use a light colored background, but a black background on the workspace makes it easier to see the fiber during termination and easier to find fiber shards.

For safety, have a bin to dispose of all fiber scraps. We like to use disposable deli containers used for soup or salad. Put all the scraps in it and tape it shut for proper disposal.

For cleaning, use lint-free wipes and lab-grade isopropyl alcohol.

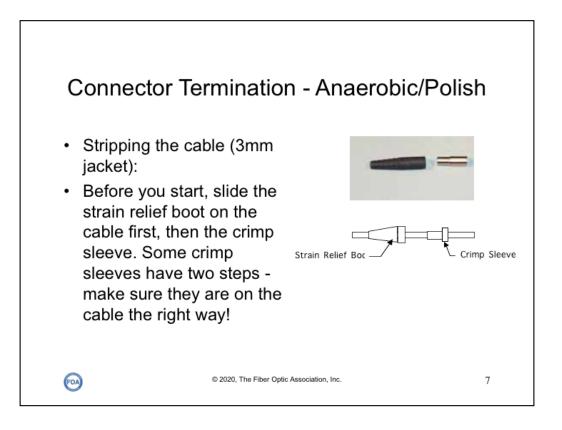
And have exact instructions for the connector you are terminating, including a cable stripping guide.

Next, get all your consumables ready.

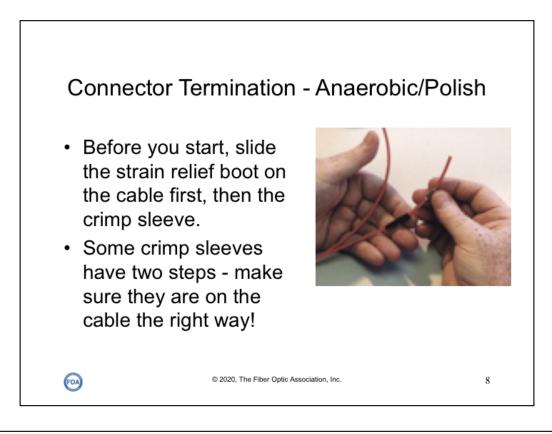

There are several methods of using anaerobic adhesives for fiber optic connectors. One method just uses the adhesive (Loctite(R) 648) and takes 5 minutes to cure. Other methods use an accelerator and take less than a minute to cure. The first method takes a bit longer but produces a more secure connection. We will show both methods.

In our training courses, we start with a 2 meter (or 6 foot) ST to ST cable with multimode fiber. This allows us to test it first to make certain both connectors are good, then cut it in half and terminate the cut ends. This allows us to test the connectors as soon as we make them.

If you use a unterminated cable, we recommend a 3 mm jacketed simplex or zipcord cable so you learn how to terminate cable with strength members properly. *And before you start stripping raw cable, tie a knot in the other end to keep the fiber and Kevlar strength members from pulling out when you try to strip the fiber.*


After doing several connectors on 3 mm jacketed cable, do some on 900 micron buffered fiber and even use a breakout kit on loose tube cable for termination.

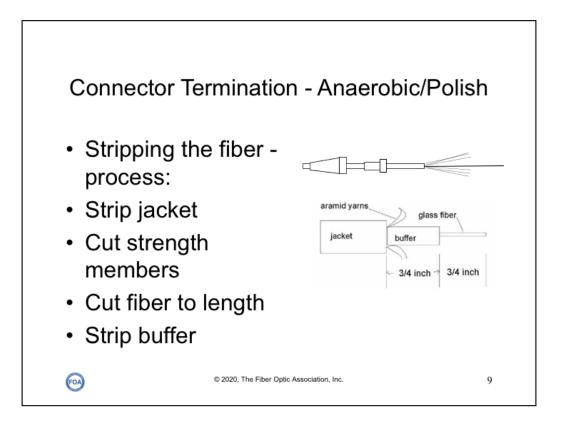
Our first exercise will be multimode termination, but we will cover singlemode later also.



Note: Some connectors may have slightly different construction. Some do not have a crimp sleeve, but rely on crimping the body of the connector onto the cable jacket and epoxying the aramid fibers to the connector. Connectors for 900 micron buffered fiber, such as found in distribution cables, may not need a crimp, as there are no strength members to crimp to, so they are epoxied to the fiber and a strain relief is attached.

Make sure you have the termination instructions for the exact connector you are using before you start!

Note: Some connectors from different manufacturers or made for different cables may have slightly different construction. Make sure you have the termination instructions for the exact connector you are using before you start!

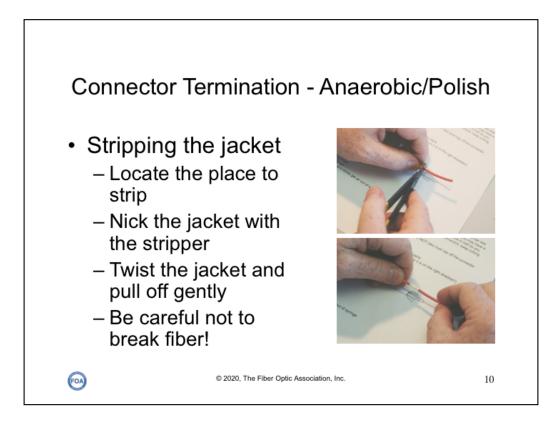

Be sure to put the crimp sleeve and strain relief boot onto the cable before you strip the jacket! After you strip the jacket off jacketed simplex cable, it's very hard to get the boot and sleeve onto the cable!

The crimp sleeve tightly holds the aramid strength members of the cable to the body of the connector to provide a strong assembly.

The strain relief boot keeps the cable from bending in too small a radius and breaking the fiber.

If you are terminating 900 micron buffered fiber, you will not need a crimp sleeve, but will need a boot, although it will be different than for jacketed cable. It will have a smaller back to fit the 900 micron fiber and a thinner taper to provide a gentler strain relief.

Hint: Make sure you have the termination instructions for the exact connector you are using before you start!

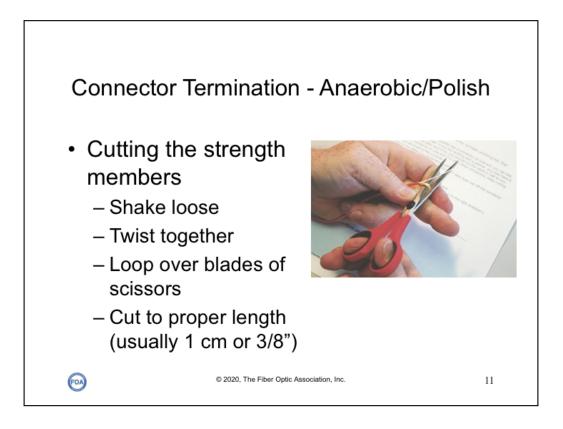

For typical 3mm jacketed cable, you will need to perform three separate operations to prepare the cable for termination. The jacket strip tool will expose the buffered fiber and strength members, next you must cut the strenth members to the correct length and then carefully remove the buffer with the fiber stripper in a series of small strips as explained below.

If the cable you are using is unterminated at both ends, then the cable jacket is unstable - the fiber will slide right out. Before you begin to strip the cable, tie a firm knot in the other end so the fiber will not pull out.. This will keep the jacket, aramid yarns, and buffer all in the same relative position.

Allow at least 3 inches (75mm) from the cut end of the fiber for termination.

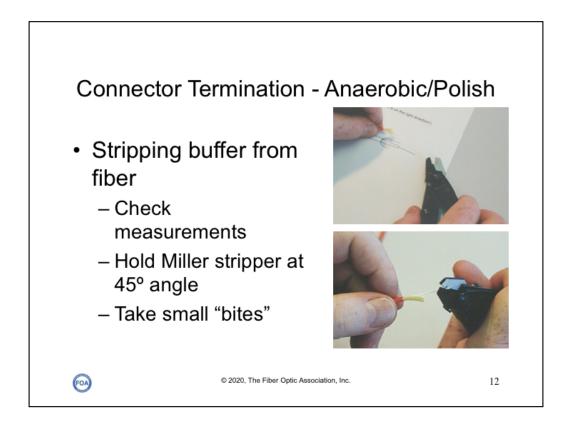
If the fiber has been cut for some time, the fiber may be brittle at the end, so cutting off 6 inches (150 mm) may make working with the fiber easier.

The instructions for the connector you are using should include a drawing of the required dimensions of the prepared end of the cable ready for termination like the one shown above. If the instructions only gives dimensions, making an exact-size drawing for visual reference will be very helpful.



Use the jacket strip tool (don't confuse it with the fiber buffer stripper) to cut through the protective jacket.

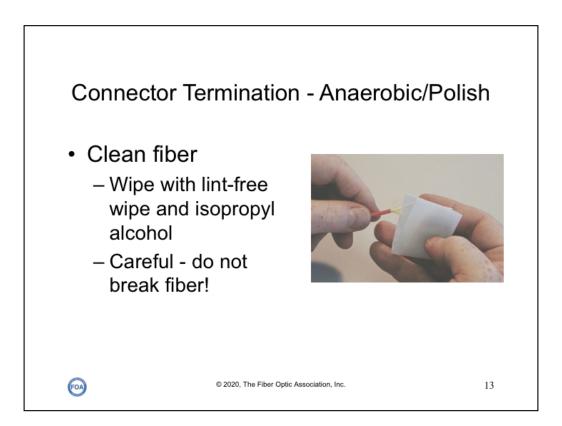
Set the jacket cutting tool on the desired mark (#4 for 3 mm fiber as shown below), bite down on the fiber at the desired location, and hold the tool closed.


Do NOT try to strip the jacket off as you might with copper!

Release the tool and grab the jacket with your fingers. Twist it and pull. It will slide off easily. Be careful not to break the fiber. If you do, cut off the cable and start the process over.

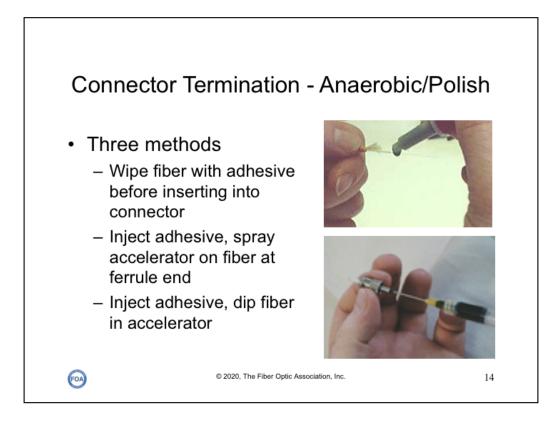
Shake the Aramid yarns loose (blowing on them often helps loosen them), gather them together in a twist, make a loop, and cut the yarns with the special scissors designed to cut this material so that 1/4 - 3/8 inch of yarn is left, as required by the connector you are using.

The strength members (usually aramid fibers, often called Kevlar, the DuPont trade name) will be crimped to the connector to give additional strength to the connection.


Stripping the buffer from the glass:

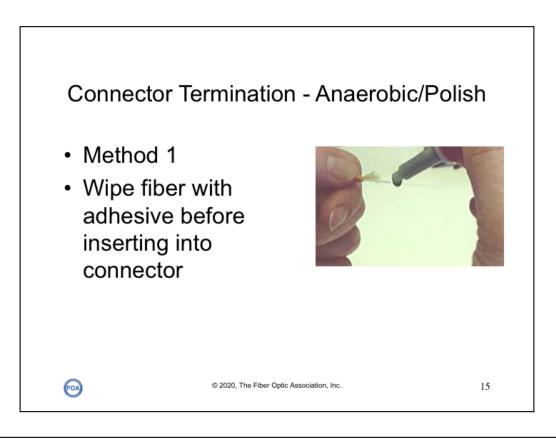
It helps to have a drawing of the stripping dimensions in the exact size you must strip to to compare directly to the fiber itself. This is much easier than measuring!

It is very important that care be taken here so that the glass fiber does not break. Attempt to strip no more than 1/8 in of buffer at a time until you get a "feel" for the fiber, then you may be able to strip longer lengths without breaking the fiber!

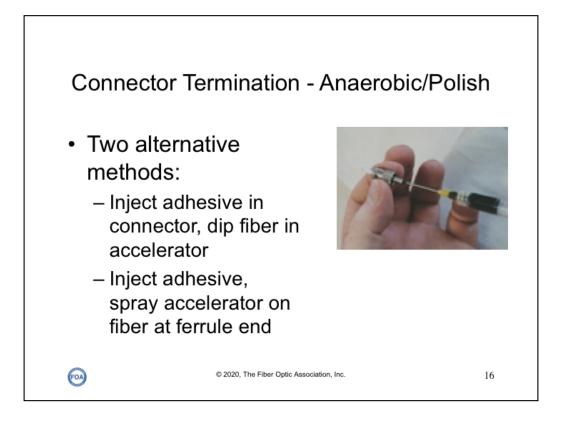

There are a number of different types of stripping tools, but the "Miller Stripper" shown here is one of the most popular, since it is very reliable. Another type is the "No-Nik" which works well if kept clean. The "Micro-Strip" is a one-step tool popular with fusion splicers.

Hold the Miller Stripper at a 45 degree angle to the fiber so that it does not bend the fiber when you clamp down on the fiber. Squeeze the stripper firmly on the fiber to cut the buffer fully. Pull slowly and steadily, keeping the fiber straight as you strip the buffer off. It will NOT slide off easily like the jacket. Continue to take 1/8 to 1/4 inch bites of buffer (3-6 mm). You must leave enough exposed buffer for the connector body to adhere to, so there must be at least 5/8 to 1 inch of fiber exposed (15-25 mm) or whatever length is required by the connector you are terminating.

Place an alcohol pad between your thumb and forefinger and wipe the fiber between them to clean it.


Careful- do not break the fiber!

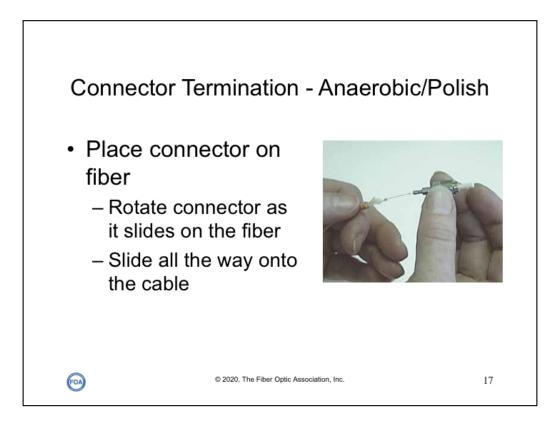
Applying the Adhesive


There are several ways that are used to apply quick curing adhesives. We'll review the methods and comment on them.

- The method we recommend uses no accelerator. The adhesive we recommend (Loctite(R) 648) is an adhesive that will cure in 3-5 minutes without an accelerator, depending on the ambient temperature. If you are making more than one termination, you do not need an accelerator at all. This process will be described without using the accelerator and then the use of the accelerator will be described.
- 2. Inject the adhesive into the connector with a syringe then insert the fiber in the connector. Spray an accelerator on the tip of the ferrule to make the adhesive cure at the end quickly to allow immediate polishing. *After spraying the tip, residue will be left on the connector ferrule that must be cleaned. Most accelerators are highly flammable, requiring care.*
- 3. Inject the adhesive into the connector with a syringe, dip the fiber in an accelerator solution then insert the fiber in the connector. *With this method, you must work fast and make sure the fiber is inserted rapidly or the adhesive will set before the fiber is fully inserted.*

Applying the Adhesive

- The method we recommend uses no accelerator. The adhesive we recommend (Loctite(R) 648) is an adhesive that will cure in 3-5 minutes without an accelerator, depending on the ambient temperature. If you are making more than one termination, you do not need an accelerator at all. This process will be described without using the accelerator and then the use of the accelerator will be described.
- This method takes a bit longer but the adhesive holds much better than with an accellerator. This mehod has been approved by the Navy for military applications, a sign of its quality.



Applying the Adhesive

There are two ways that are used to apply quick curing adhesives using a syringe. Both use an accelerator for the anaerobic adhesive. Both require moving quickly as the accelerator will cause the adhesive to set in less than 30 seconds, so it the fiber is not inserted fully quickly, the adhesive may set before the fiber is fully inserted and the connector will have to be discarded.

(Use Loctite 7471 for Loctite 648 adhesive)

- 1. Inject the adhesive into the connector with a syringe, dip the fiber in an accelerator solution then insert the fiber in the connector. *With this method, you must work fast and make sure the fiber is inserted rapidly or the adhesive will set before the fiber is fully inserted.*
- 2. Inject the adhesive into the connector with a syringe then insert the fiber in the connector. Spray an accelerator on the tip of the ferrule to make the adhesive cure at the end quickly to allow immediate polishing. *After spraying the tip, residue will be left on the connector ferrule that must be cleaned. Most accellerators are hightly flammable, requiring care.*

Slide the connector onto the fiber. As you feed the fiber into the connector, rotate the connector back and forth so the fiber will find its way through the ferrule. This rotation will also spread the adhesive all around the fiber and float the fiber to the center of the hole in the ferrule.

Slide the connector all the way back to the jacket. Some adhesive may leak out the back onto the yarn and jacket. This will help secure the connection.

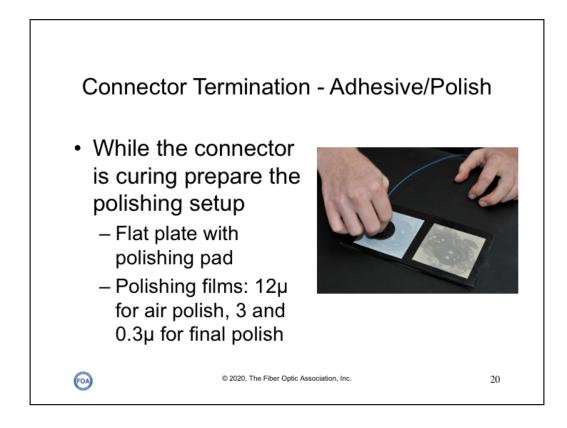
A short length of fiber will protrude from the ferrule end.

Notes: If you use Method 1, wiping the fiber with the adhesive, set the connector aside for 3-5 minutes to cure.

If using Method 2, dip the fiber in the accelerator (Loctite 7471 for Loctite 648 adhesive) then quickly insert it in the connector that has been injected with adhesive. Since the accelerator makes the adhesive set very quickly, you must work fast to get the fiber inserted into the ferrule of the connector before it sets.

In Method 3,, insert the fiber into the connector, then wipe the protruding fiber with the accelerator solution using the built-in brush in the cap. Pull the fiber slightly back into the connector, then push fully back in. The adhesive will set in 30 seconds.

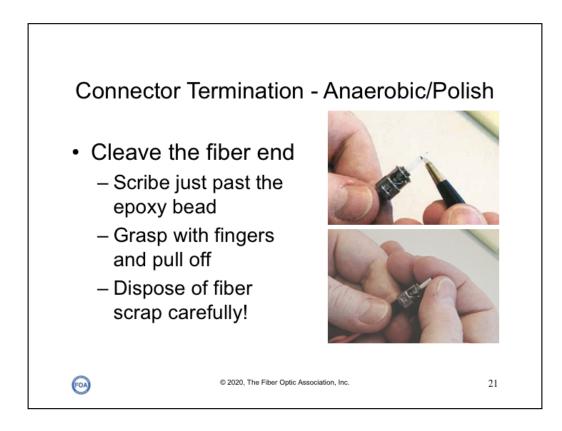
While you hold the connector against the jacket, slide the crimping sleeve onto the connector body. On some connectors, you will have to make two crimps on the sleeve.


Adjust the crimp tool to the proper size hex to crimp the wider part of the sleeve. Squeeze the tool to maximum compression to complete the crimp. Adjust the tool to the smaller hex to crimp the narrow part of the sleeve over the jacket.

Slide the strain relief boot over the crimp sleeve. Be careful not to break the glass fiber protruding from the ferrule. This will be removed in the polishing step after the epoxy cures.

If you break the fiber protruding from the ferrule at this point or the adhesive sets before the connector is fully inserted, cut the connector off and start over. The fiber always breaks below the end of the ferrule and cannot be polished properly.

At this pint, set the connector aside until the adhesive has set fully.



While the connector is curing, get your polishing setup ready on the tabletop. For PC connectors, which are most connectors sold today, the surface should be soft, for example a rubber pad, to allow the convex surface of the PC connector ferrule to be polished correctly.

You need a flat plate with polishing pad. The polishing pad should be ~3mm (1/8") thick rubber with a ~80durometer rating. This allows the rounded end of the connector ferrule to guide the fiber into a physical contact (PC) finish. Photos show just a glass plate and not the black rubber polishing pad for easier photography.

You need 3 polishing films: 12μ for air polish, 3 and 0.3μ for final polish on the pad. Polishing films are color-coded for identification.

We also recommend polishing on a black surface since it will make it easier to find fiber scraps, but you can see from the photo above that photos this way are not as visible, so we'll use white backgrounds.

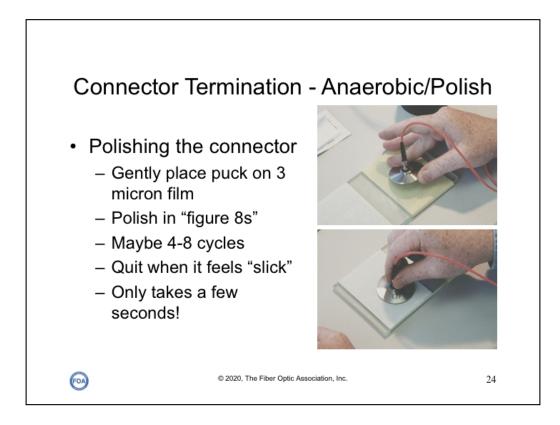
Once the adhesive has cured, you are ready to scribe and remove the excess glass from the tip.

This is a more critical process than with epoxy connectors, since there is no bead of epoxy to support the fiber. Carefully scribe the fiber just above the surface of the ferrule. Be very gentle or you can break the fiber. Lay the scribe aside and grasp the glass. Carefully pull up and away from the scribe. The glass should break cleanly at the scribe point, but there will be a little bit left at the tip and it may be sharp!

Discard the glass fiber fragment in the fiber disposal bin!

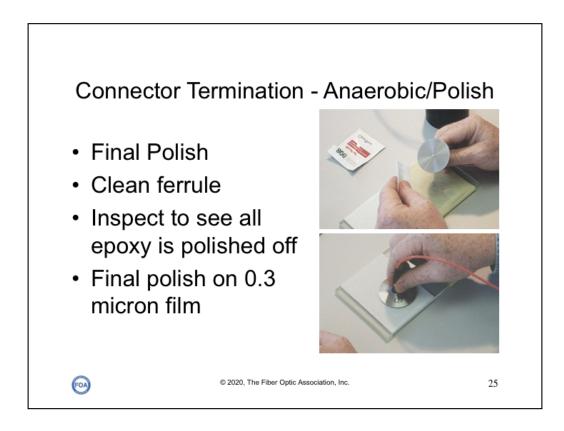
"Air Polish" the fiber stub first with 12 micron film, holding it as shown.

Start with virtually NO PRESSURE since the fiber is not supported like with the bead of epoxy on the epoxy/polish method- it's just sticking out of the ferrule. Slightly more pressure can be applied as you progress. Polish about 40-50 quick strokes depending on the length of the fiber protruding from the ferrule.


Polish the tip lightly for 10 to 20 seconds. Notice the change in sound (quieter) as the burr gets filed down. Remember to brush the tip lightly and do not overpolish as it will create scratches that cannot be removed in finer polishes.

Visually inspect the tip. There should be some epoxy left, indicated by a faint color, and the glass itself will be not be smooth.

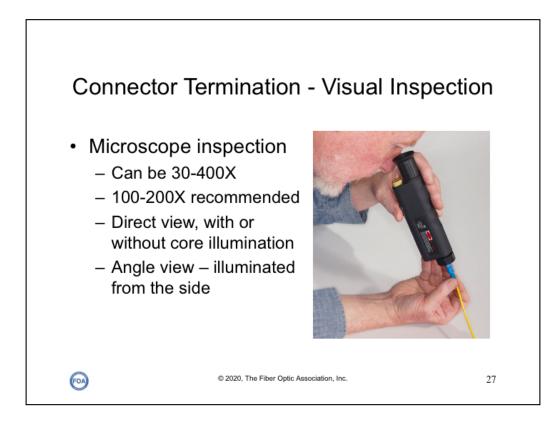
Clean the tip with an alcohol wipe to remove any loose grit or epoxy.


Now prepare to use the polishing puck with the polishing plate. Always hold the puck up in your hand and then insert the connector. Never insert the connector into the puck while it is lying on the glass because you may chip the glass at the ferrule tip.

Remember the tip is a exposed glass end which can be easily damaged before it is polished properly. Gently place the puck with the connector in it on the yellow film which is on the polishing glass.

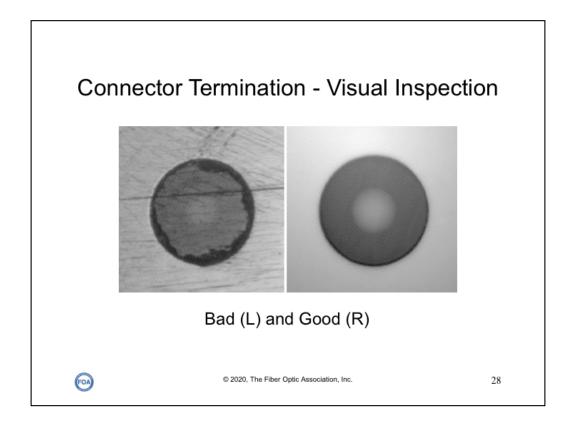
Very lightly make 4 or 5 figure eights as you polish the tip. You'll actually feel a smoothing of the surface as the epoxy wears off and the ceramic surface of the ferrule meets the surface of the abrasive. Do not overpolish the tip. Remember, the glass is softer than the polishing abrasives. Overpolishing can cause the glass to be undercut, and this will cause excess light loss at the connection.

Stop as soon as the connector feels "slick"! The polishing film and the ferrule are made of similar materials. As soon as all the epoxy and protruding fiber is removed, the ferrule will be rubbing against the film and it will feel like the puck is floating on air.

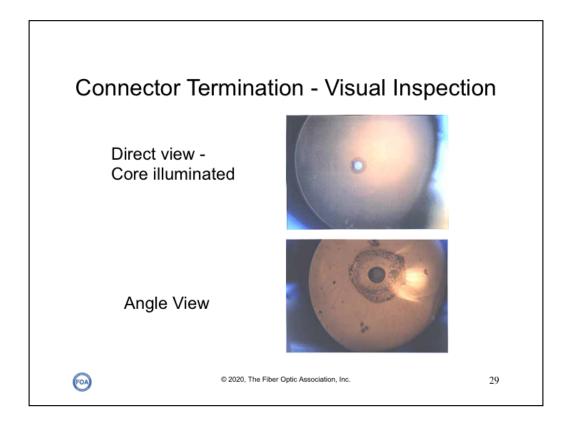


Clean the tip with an Alco pad and inspect it to see that all the epoxy is gone. If not, give it 1 or 2 more figure eights on the yellow 3 micron film to remove it. Remember - do not overpolish!

Very gently lay the puck on the 0.3 micron film. With almost no pressure, make about six figure eight strokes.

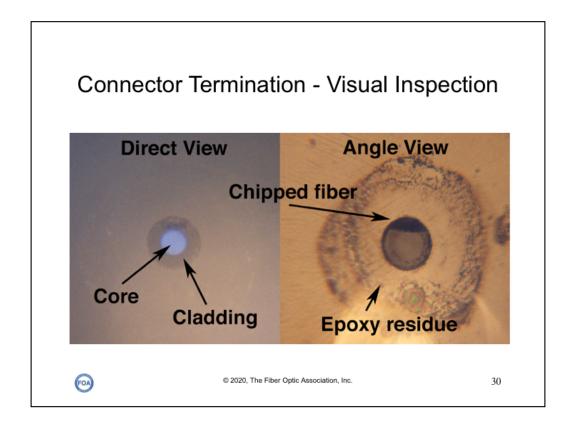


Remove the connector ferrule from the puck and clean the ferrule with a alcohol wipe. Now it is ready for visual inspection.

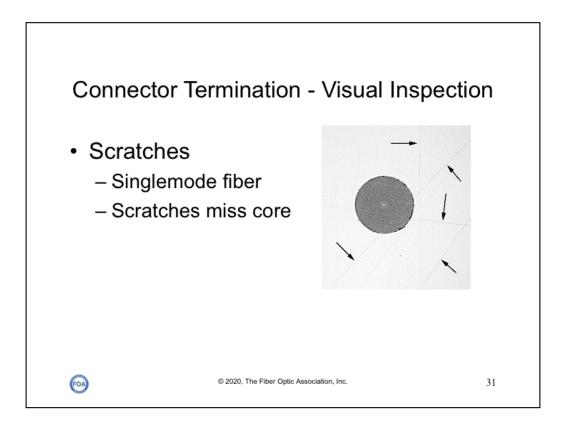


At this point, inspect the polished end of the ferrule with the microscope to see that the epoxy is completely removed and that the tip is smooth and free of scratches.

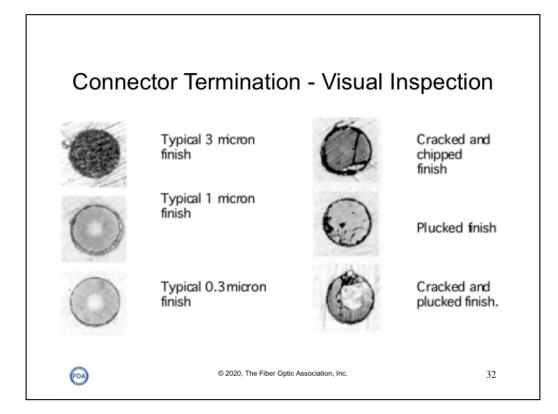
Microscopes for fiber optic connector inspection range from 30 to 400 power. We think that anything under 100X is too low for proper inspection and anything over 200X makes inspection too critical. It is very important to have the ability to shine light through the fiber during inspection, to check for cracks in the connector caused by the termination process.



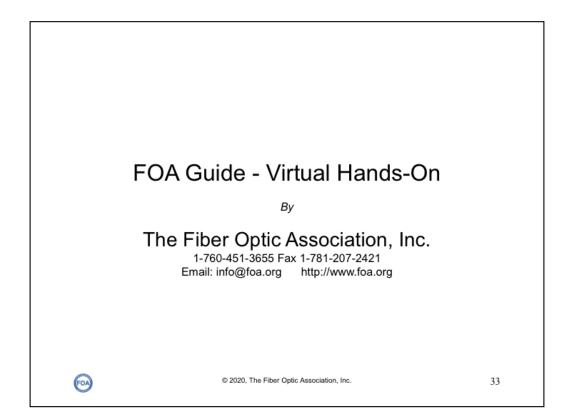
The core should be nice and smooth, an even gray color, with no big scratches. If you see large scratches, go back to the 0.3 micron film and use the polishing puck to very lightly give 1 or 2 more figure eights to remove them. The film of epoxy can be removed by polishing on the same film on the rubber polishing pad, which polishes the entire convex PC ferrule.


A direct view at 100 times magnification should look like this: The bright dot in the center is the core of the fiber and the darker annular ring is the cladding. On this connector, notice the dark area to the left of the core, in the cladding. This appears to be a small crack in the fiber that only affects the cladding, not the core, so it is not a problem. If the crack had been in the core, we would not have seen a round dot for the illuminated core.

You should also look at the tip under the microscope at an angle if this is possible with the microscope you are using. The angular view will highlight any surface irregularities better than the head on view. It may look like this: Now you can see some small amount of epoxy still on the end of the ferrule, which shows up as the dark, uneven ring around the fiber (the ring is caused by the convex end of the PC ferrule.) You can also see the dark area to the left of the fiber, which is the small crack we saw on the direct view, but is more obvious here. The core should be nice and smooth, an even gray color, with no big scratches. If you see large scratches, go back to the 0.3 micron film and use the polishing puck to very lightly give 1 or 2 more figure eights to remove them. The film of epoxy can be removed by polishing on the same film on the rubber polishing pad, which polishes the entire convex PC ferrule.



A closer look at this connector shows all is not well. A chip on the side of the fiber is hard to see in the direct view, but is visible in the angle view. Since it does not quite reach the fiber core, it may not affect loss, but it is so large that it is probably cause for rejection.


The direct view looks fine, but the angle view shows some minor residue from the epoxy bead on the end of the ferrule. This would probably be OK for a multimode connector but not for singlemode.

Here is a connector with scratches on the ferrule and fiber at high magnification. This is SM fiber, as you can see from the small core of the fiber. The scratches are mostly on the ferrule and none cross the core of the fiber, so it should be OK.

More polishing results and faults found by visual inspection.

