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Decibels	
Stan	Hendryx,	Hendryx	&	Associates,	Sunnyvale,	CA	 April	2018	

Engineers	and	technicians	are	often	confronted	with	calculating	or	measuring	
characteristics	of	signal	transmission	systems,	including	power	of	a	signal,	power	
loss	in	a	circuit,	gain	of	an	amplifier,	or	the	sensitivity	of	a	detector.	The	signals	
involved	might	be	electrical,	optical,	radio,	or	acoustic.	These	quantities	all	require	
determining	ratios	of	two	numbers—	the	ratio	of	an	output	power	to	an	input	
power,	or	the	ratio	of	a	power	level	to	a	standard	unit	of	power.	
Power	is	measured	in	watts.	The	output	power	𝑃!	watts	at	a	given	point	on	a	
transmission	line	is	seen	to	be	the	input	power	𝑃! 	times	a	loss	factor	L	

𝑃! = 𝐿 𝑃! 	 Eq.	1	
L	depends	on	the	length	of	the	line	and	technical	factors	about	the	line.	In	a	passive	
transmission	line,	L	is	less	than	1.	If	the	line	includes	an	amplifier	or	regenerator,	𝑃!	
could	be	greater	then	1.	L	is	the	ratio	of	𝑃!	to	𝑃! . 	

𝐿 =
𝑃!
𝑃!
	 Eq.	2	

Being	the	ratio	of	two	powers,	L	is	dimensionless,	of	dimension	1.	These	ratios	can	
take	on	very	large	to	very	small	values,	and	would	often	require	repeated	
multiplication	or	division	to	obtain	an	overall	result	for	a	system.	Performing	these	
multiplications	and	divisions	is	unwieldy.		

Addition	and	subtraction	are	much	easier	than	multiplication	and	division.	In	1614,	
the	Scottish	mathematician	John	Napier1	invented	a	method	of	calculation	that	turns	
multiplication	into	addition	and	division	into	subtraction	—	the	logarithm.	
Logarithms	were	the	single	most	important	improvement	in	arithmetic	calculation	
before	the	modern	computer	and	handheld	digital	calculator.	What	made	them	so	
useful	is	their	ability	to	reduce	multiplication	to	addition	and	division	to	subtraction.		

In	1924,	engineers	at	Bell	Telephone	Laboratories	adopted	the	logarithm	to	define	a	
unit	for	signal	loss	in	telephone	lines,	the	transmission	unit	(TU).	The	TU	replaced	
the	earlier	standard	unit,	miles	of	standard	cable	(MSC),	which	had	been	in	place	
since	the	introduction	of	telephone	cable	in	1896.	1	MSC	corresponded	to	the	loss	of	
signal	power	over	1	mile	of	standard	cable.	Standard	cable	was	defined	as	having	a	
resistance	of	88	ohms	and	capacitance	of	0.054	microfarads	per	mile.	1	MSC	equals	
1.056	TU.	The	loss	factor	in	TU	was	ten	times	the	base-10	logarithm	of	the	ratio	of	
the	output	power	to	the	input	power.	

In	1928,	Bell	Telephone	Laboratories	renamed	the	transmission	unit	the	decibel	
(dB).	The	prefix	‘deci’	comes	from	Latin	decimus	‘tenth’.	A	decibel	is	one	tenth	of	a	
bel	(B),	the	unit	named	in	honor	of	Alexander	Graham	Bell,	inventor	of	the	telephone	
																																																								
1	Napier	also	invented	the	use	of	the	decimal	point	to	denote	fractions.	
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in	1879	and	founder,	in	1885,	of	the	American	Telephone	and	Telegraph	Company	
(AT&T).	The	bel	is	rarely	used;	the	decibel	has	become	widely	used.	One	decibel	is	
about	the	smallest	attenuation	detectable	by	an	average	listener,	and	corresponds	to	
a	signal	power	loss	of	20.6%.		
Interestingly,	the	smallest	detectable	change	in	sound	level	by	listeners	is	relatively	
independent	of	the	level	–	about	1	dB	at	any	level,	20.6%	power	reduction.	This	
means	that	human	perception	of	loudness	is	logarithmic.	It	is	the	percentage	change	
in	level	that	matters,	not	the	absolute	change	in	watts.	Quantities	whose	significance	
is	proportional	to	a	constant	percent	change	are	logarithmic,	e.g.,	compound	interest.	

Note	that	the	loss	factor	L	is	not	the	power	loss.	L	is	the	ratio	of	two	values	of	power,	
a	dimensionless	quantity,	a	number.	The	power	loss	itself	is	𝑃! − 𝑃! ,	which	has	units	
of	watts.	By	convention,	a	negative	difference	represents	a	power	loss;	a	positive	
difference	represents	a	power	gain,	as	with	an	amplifier.		

The	power	loss	(or	gain)	can	be	expressed	as	a	fraction	of	the	input	power	
𝑃! − 𝑃!
𝑃!

=
𝑃!
𝑃!
− 1 = 𝐿 − 1	 Eq.	3	

The	loss	factor	in	decibels	𝐿!" 	is	defined	to	be	10	times	the	base-10	logarithm	of	L.	

𝐿!" ≜ 10 log!" 𝐿 = 10 log!"
𝑃!
𝑃!
	 Eq.	4	

The	quantity	of	real	interest	is	the	loss	factor	L.	Decibel	is	just	a	convenient	unit	in	
which	to	represent	L.	

Absolute	vs.	Relative	Power	Levels	

When	measuring	loss	or	gain,	it	is	customary	to	set	𝑃! 	to	an	arbitrary	reference	level,	
measure	𝑃!	and	determine	the	ratio	L	and	𝐿!" .	Test	instruments	do	the	math.	The	
practical	procedure	is	to	connect	a	reference	source	to	the	instrument,	note	its	level	
as	the	reference	level	𝑃! 	then	connect	the	output	𝑃!	to	the	instrument	and	read	the	
gain	or	loss	in	decibels	from	the	instrument.	
To	measure	absolute	power	levels,	the	test	instrument	must	be	calibrated	to	an	
international	standard	unit	of	power,	typically	1	milliwatt,	0.001	watt.		Calibration	is	
first	performed	when	the	instrument	is	manufactured	and	periodically	thereafter.	
These	calibrations	are	traceable	to	the	international	standard	watt	using	a	transfer	
standard	maintained	by	a	national	laboratory.	In	the	US,	this	laboratory	is	NIST,	the	
National	Institute	of	Science	and	Technology	of	the	Department	of	Commerce.	

Setting	the	instrument	to	measure	absolute	power	causes	it	to	use	its	calibrated	
reference	level	of	𝑃! = 0.001	watt.	The	procedure	is	simpler:	there	is	no	need	to	
measure	the	reference	source,	only	the	output,	𝑃! .		

To	distinguish	an	absolute	power	level	in	decibels	relative	to	one	milliwatt,	the	unit	
symbol	dBm	is	used.	The	unit	symbol	dB	is	used	for	relative	power	measurements	
where	the	reference	power	level	is	unspecified.	
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Decibels	for	Field	Values	

A	decibel	quantity	corresponds	to	a	power	ratio,	i.e.	the	ratio	of	two	power	levels.	
Sometimes	instruments	measure	voltage	or	current	in	an	electrical	circuit,	or	
electric	or	magnetic	field	strength	in	other	applications,	not	power.	To	get	a	decibel	
value	from	a	voltage,	current,	or	field	level	ratio	that	is	the	same	as	if	power	were	
measured,	Eq.	4	needs	to	be	adjusted.	
It	turns	out	that	power	is	proportional	to	the	square	of	voltage,	current,	or	field	
levels.	Doubling	the	voltage	quadruples	the	power.	In	this	case,	𝐿!"#$% = 𝑉!/𝑉! 	is	used	
and	Eq.	4	becomes	

𝐿!" ≜ 20 log!" 𝐿!"#$% = 20 log!"
𝑉!
𝑉!
= 10 log!"

𝑉!
𝑉!

!

	 Eq.	5	

Logarithms	

To	understand	the	decibel,	it	is	necessary	first	to	understand	logarithms.	The	
mathematics	used	here	is	taught	in	high	school.	The	presentation	is	heuristic,	
starting	with	counting	and	elementary	multiplication	and	division	with	integers,	
then	building	to	include	rational	numbers	and,	finally,	all	numbers.	

The	function	𝑓 𝑥 = 𝑎!	is	called	the	exponential	function	with	base	a,	a	>	0.		
Note	that	when	𝑎 = 1, 𝑓 𝑥 = 1	for	all	x,	so	𝑎 = 1	is	generally	excluded.		

Consider	a	positive	number	a	multiplied	by	itself	n	times.	n	is	thus	a	positive	integer.	
Let	x	=	n.	Then	𝑓 𝑛 = 𝑎! = 𝑎 ∗ 𝑎 ∗ 𝑎…𝑎,	i.e.	a	repeated	n	times.		
The	logarithm	of	𝑎!	of	base-a	is	defined	as	the	exponent	n.		

log! 𝑎! ≜ 𝑛	 Eq.	6	

𝑎!"#! !! = 𝑎!	 Eq.	7	

A	logarithm	is	an	exponent.	Eq.	7	shows	that	the	logarithm	function	is	the	inverse	of	
the	exponential	function.	
Suppose	we	have	another	exponential	with	base	a	having	m	factors,	𝑎!,	where	m	is	
also	a	positive	integer.	If	we	form	the	product	𝑎! 𝑎!,	then	we	have	𝑛 +𝑚	
repetitions	of	a.	However,	this	longer	product	is	the	same	as	𝑎!!!.	Thus,	we	have	

𝑎!𝑎! = 𝑎!!!	 Eq.	8	

log! 𝑎!𝑎! = log! 𝑎!!! =  𝑛 +𝑚 = log! 𝑎! + log! 𝑎!	 Eq.	9	

Here	we	have	in	Napier’s	invention	a	way	to	represent	the	product	of	two	numbers	
𝑎!𝑎!	as	the	sum	of	logarithms	𝑛 +𝑚	of	those	two	numbers.	When	the	numbers	are	
represented	as	exponentials	with	a	common	base	a,	we	add	their	logarithms.	
Suppose	n	is	greater	than	m	and	we	divide	instead	of	multiply.	Then	we	have		

𝑎!

𝑎! = 𝑎!!!	 Eq.	10	
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This	is	so	because	the	m	as	in	the	denominator	cancel	m	as	in	the	numerator,	leaving	
𝑛 −𝑚	as	the	total	number	of	as.		

log!
𝑎!

𝑎! = log! 𝑎!!! =  𝑛 −𝑚 = log! 𝑎! − log! 𝑎!	 Eq.	11	

Here	we	likewise	have	a	way	to	represent	the	quotient	of	two	numbers	𝑎!/𝑎!	as	the	
difference	of	logarithms	𝑛 −𝑚	of	those	two	numbers.	When	the	numbers	are	
represented	as	exponentials	with	a	common	base	a,	we	subtract	their	logarithms.	

Note	that	𝑎! = 1,	for	any	a,	and	𝑎!!! = 𝑎! 𝑎!! = 𝑎! =  1,	so	𝑎!! = !
!!
= !!

!!
.		

Then	
log! 1 = 0, for all 𝑎	 Eq.	12	

log! 𝑎!! = log!
1
𝑎! = log!

𝑎!

𝑎! = 0− 𝑛 = − log! 𝑎!	 Eq.	13	

The	logarithm	of	the	reciprocal	is	the	negative	of	the	logarithm.	
So	far,	we	have	shown	how	to	calculate	the	logarithm	of	any	integer	power	of	a	and	
the	logarithm	of	the	reciprocal	of	any	integer	power	of	a,	where	a	can	be	any	
positive	number,	not	restricted	to	integers,	just	a	>	0.	a	cannot	be	zero,	since	0! = 0	
and	division	by	zero	is	undefined.	

We	would	like	to	represent	any	number	as	a	chosen	base	raised	to	some	power.	It	
turns	out	this	can	be	done	for	all	positive	numbers.	However,	so	far,	we	have	only	
shown	that	this	works	when	n	and	m	are	positive	integers.	We	can	expand	the	
domain	of	𝑥	in	the	exponential	function	by	showing	how	to	calculate	𝑓 𝑥 	when	𝑥	is	
a	rational	number,	i.e.	the	ratio	of	two	integers.	

Consider	𝑎
!
!	,	which	is	defined	to	be	the	number	that,	when	multiplied	by	itself	m	

times,	gives	a,	i.e.	𝑎
!
!	is	the	mth	root	of	a.	When	m=2,	𝑎

!
!	is	the	square	root;	when	

m=3,	𝑎
!
!	is	the	cube	root,	and	so	forth.	By	multiplying	𝑎

!
!	by	itself	n	times		

𝑎
!
!

!
= 𝑎

!
!	 Eq.	14	

log! 𝑎
!
! =

𝑛
𝑚	

Eq.	15	

We	now	have	a	way	to	calculate	the	exponential	𝑓(𝑥)	for	𝑥	any	rational	number.	
This	also	works	for	irrational	numbers,	numbers	that	cannot	be	expressed	as	the	
ratio	of	two	integers,	e.g.	𝜋 = 3.141592…,	where	the	decimals	never	repeat.	Since	
rounding	an	irrational	number	to	a	fixed	number	of	decimal	places	always	results	in	
a	rational	number,	extending	the	number	of	decimal	places	indefinitely	also	works.		
The	logarithm	function	with	base	𝑎 is 𝑦 = log! 𝑥.	It	is	defined	as	the	inverse	of	the	
exponential	function	with	base	a,	𝑦 = 𝑎!  (a > 0, a ≠ 1).		
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The	domain	of	log! 𝑥  is 0,∞ ,	which	is	the	range	of	𝑎! .		
The	range	of	log! 𝑥  is (−∞,∞),	which	is	the	domain	of	𝑎! .		
Eq.	16	shows	this	inverse	relationship.	

The	domain	of	a	function	𝑦 = 𝑓(𝑥)	is	the	set	of	values	of	𝑥	for	which	the	function	is	
defined.	The	range	of	the	function	is	the	set	of	values	of	the	function,	𝑦.	The	domain	
and	range	of	the	exponential	and	logarithm	functions	are	open	intervals,	i.e.	they	do	
not	include	the	endpoints	0	or	±∞.	Another	example:	𝑦 = 𝑥! and y = 𝑥	are	
inverses.	The	domain	of	one	is	the	range	of	the	other.	 𝑥

!
= 𝑥! = 𝑥, 𝑥 ≥ 0.		

Summary	of	the	Rules	for	Exponentials	

If	a	>	0	and	b	>	0,	the	following	rules	hold	true	for	all	real	numbers	𝑥 and 𝑦.	
1. 𝑎! 𝑎! = 𝑎!!!	
2. !!

!!
= 𝑎!!!	

3. 𝑎! ! = 𝑎! ! = 𝑎!"	
4. 𝑎!𝑏! = 𝑎𝑏 !	
5. !!

!!
= !

!

!
	

Summary	of	the	Rules	for	Logarithms	

For	any	numbers	a	>	0,	a	≠	1,	b	>	0	and	𝑥 > 0,	the	logarithm	of	base-a	function	
satisfies	the	following	rules:	

1. Product	Rule:		 log! 𝑏𝑥 = log! 𝑏 + log! 𝑥	
2. Quotient	Rule:	 log!

!
!
= log! 𝑏 − log! 𝑥	

3. Reciprocal	Rule:	 log!
!
!
= − log! 𝑥	

4. Power	Rule:	 	 log! 𝑥! = r log! 𝑥	
5. Conversion	Rule:	 log! 𝑥  = log! 𝑥  log! 𝑎	

Applications	

Three	values	of	the	logarithm	base,	a,	are	widely	used:	10,	2,	and	e	=	2.71828….	
Ten	is	used	for	decibels.	Two	is	used	in	computer	science.	Since	a	binary	number	
comprising	n	bits	can	take	on	2!	possible	values,	the	number	of	bits	required	to	
represent	a	given	positive	integer	N	is	𝑛 = log!𝑁,	rounded	up	to	the	next	bit.	
e	is	Euler’s	Number,	a	value	of	particular	importance	in	calculus.	𝑒!and	all	of	its	
derivatives	are	the	same,	𝑒! .	Euler’s	Number	also	appears	in	the	fascinating	
equation	𝑒!" − 1 = 0,	where	𝑖! = −1.	This	equation,	also	due	to	Leonard	Euler	
(1707-1783),	relates	five	of	the	most	important	constants	in	mathematics.		

Logarithms	of	base-10	are	called	common	logarithms,	commonly	written	as	“log 𝑥.”	
Logarithms	of	base-e	are	called	natural	logarithms,	commonly	written	as	“ln 𝑥.”	This	
section	focuses	on	common	logarithms.	

To	use	common	logarithms,	a	table	of	logarithms	(or	calculator!)	is	needed.	
However,	only	common	logarithms	of	numbers	between	1	and	10	need	to	be	

log 𝑎!"#! !! = log! 𝑎! = 𝑥 , 𝑎 > 0,𝑎 ≠ 1, 𝑥 > 0	 Eq.	16	
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tabulated.	Each	1:10	interval	is	called	a	decade.	The	part	of	a	logarithm	following	the	
decimal	point	is	called	the	mantissa.	The	whole	number	part	is	the	exponent.	
Logarithms	of	numbers	less	than	1	or	greater	than	10	are	obtained	by	expressing	
the	number	in	scientific	notation,	looking	up	the	significant	part	of	the	number	b	in	
the	table	to	get	the	mantissa,	and	adding	the	exponent	n.	

log 𝑏×10! = log 𝑏 + 𝑛	 Eq.	17	
Table	1	Common	Logarithms	

𝑁 = 10!	 𝑁 = 10!!	 𝑛 = (– )log!"𝑁	 𝑁 = 10!	 𝑁 = 10!!	 𝑛 = (– )log!"𝑁	

1.0	 (1.0)	 0.0000	 2.5119	 (0.3981)	 0.4000	

1.1	 (0.9091)	 0.0414	 2.75	 (0.3636)	 0.4393	

1.1111	 (0.9000)	 0.0458	 3.0	 (0.3333)	 0.4771	

1.2	 (0.8333)	 0.0792	 3.1623	 (0.3162)	 0.5000	

1.25	 (0.8000)	 0.0969	 3.3333	 (0.3000)	 0.5229	

1.2589		 (0.7943)	 0.1000	 3.5	 (0.2857)	 0.5441	

1.3	 (0.7692)	 0.1139	 3.9811	 (0.2512)	 0.6000	

1.33	=	4/3	 (0.7500)	 0.1249	 4.0	 (0.2500)	 0.6020	

1.4	 (0.7143)	 0.1461	 4.5	 (0.2222)	 0.6532	

1.4286	 (0.7000)	 0.1549	 5.0	 (0.2000)	 0.6990	

1.5	=	3/2	 (0.6667)	 0.1761	 5.0119	 (0.1995)	 0.7000	

1.5849	 (0.6310)	 0.2000	 5.5	 (0.1818)	 0.7404	

1.6	 (0.6250)	 0.2041	 6.0	 (0.1667)	 0.7782	

1.67	=	5/3	 (0.6000)	 0.2218	 6.3096	 (0.1585)	 0.8000	

1.7	 (0.5882)	 0.2304	 6.5	 (0.1538)	 0.8129	

1.75	=	7/4	 (0.5714)	 0.2430	 7.0	 (0.1429)	 0.8451	

1.8	 (0.3652)	 0.2553	 7.5	 (0.1333)	 0.8751	

1.9	 (0.5263)	 0.2788	 7.9433	 (0.1259)	 0.9000	

1.9953	 (0.5012)	 0.3000	 8.0	 (0.1250)	 0.9030	

2.0	 (0.5000)	 0.3010	 8.5	 (0.1176)	 0.9294	

2.25	=	9/4	 (0.4444)	 0.3522	 9.0	 (0.1111)	 0.9542	

2.5	 (0.4000)	 0.3979	 10.0	 (0.1000)	 1.0000	

Table	1	warrants	some	explanation.	The	second	column,	which	is	the	reciprocal	of	
the	number	in	the	first	column,	is	added	for	convenience.	The	third	column	gives	the	
mantissa,	the	logarithm	of	the	number	in	the	first	column.	If	the	logarithm	is	taken	
to	be	a	negative	value,	then	it	is	the	mantissa	of	the	number	in	the	second	column.	
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Figure	1	is	a	graph	of	log 𝑥 and 1/𝑥.	The	logarithm	of	a	number	less	than	1	is	
negative,	as	shown	by	the	graph.	
To	convert	a	logarithm	to	a	decibel	value,	multiply	by	10.	To	convert	a	decibel	value	
to	a	logarithm,	divide	by	10.	See	Eq.	4.	
If	a	level	number	is	greater	than	10	or	less	than	1,	express	the	number	in	scientific	
notation,	𝑏×10!	where	b	is	a	number	between	1	and	10.	Enter	b	in	column	1	and	
read	the	mantissa	from	column	3.	Add	the	exponent	n	to	get	the	logarithm.	See	
Eq.	17.	Convert	to	decibels	by	multiplying	the	logarithm	by	10.		

	
Figure	1	log	x	(red)	and	1/x	(blue)	

Example	1	

What	is	the	loss	factor	L	that	corresponds	to	1	dB?	Enter	column	3	with	
1/10	=	0.1000	and	read	the	loss	factor	as	1.2589	from	column	1.		
The	gain	is	1.2589	–	1	=	0.2589,	or	25.89%.	See	Eq.	3.	
Example	2	

What	is	the	loss	factor	L	that	corresponds	to	–1	dB?	Infer	the	minus	sign	and	enter	
column	3	with	1/10	=	0.1000.	Read	the	loss	factor	as	0.7943	from	column	2.		
The	loss	is	1	–	0.7943	=	0.2057,	or	20.57%.	

Example	3	
What	decibel	value	corresponds	of	a	factor	of	2	gain	or	loss?	Enter	column	1	with	2.0	
and	read	the	logarithm	from	column	3	as	0.3010.	Multiply	by	10	to	get	±3.010	dB.	
+	is	a	2×	gain,	;	–	is	a	½	loss.	Alternatively,	express	½	as	5.0×10!!.		Enter	column	1	
with	5.0	and	read	the	mantissa	from	column	3	as	0.6990.	Add	the	exponent,	–1,	to	
get	the	logarithm,	0.6990–1	=	–0.3010.	Multiply	by	10	to	get	–3.010	dB.	


